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A higher order time differencing method for the spatially nonhomogeneous
Boltzmann equation is derived from the integral form of the equation along its
characteristic line. Similar to the splitting method, which solves the collisionless
equation in the convection step and the spatially homogeneous Boltzmann equa-
tion in the collision step, the present method consists of two steps, one of which
is the same as the convection step in the splitting method. The difference from the
splitting method is in the other step, where not only the collision term but also its
variation along the characteristic line is taken into account correctly. The truncation
error of this method per time stept is O(At®) and its higher order accuracy is
demonstrated numerically in the shock propagation problem using the BGK model
equation. It is shown that such accuracy is never realized in the framework of the
conventional splitting formulation, which is contrary to Bogomolov's resul§(S.R.
Comput. Math. Math. Phy&8, 79 (1988)). The other higher order methods based on
the integral form are also presented. Furthermore, the extension to the stochastic ap-
proach, modification of the conventional direct simulation Monte-Carlo procedure, is
proposed. (© 1998 Academic Press

Key WordsBoltzmann equation; finite difference method; DSMC method; higher
order accuracy.

I. INTRODUCTION

The splitting method is widely used in the numerical analysis of the Boltzmann equatio
This method consists of two steps, i.e. the convection step, which solves the collisic
less equation, and the collision step, which solves the spatially homogeneous Boltzmz
equation. The direct-simulation Monte-Carlo (DSMC) method [1-3], which is the mos
prevailing method for predicting the behavior of rarefied gas flows at the present time,
also based on this formulation. According to Bogomolov [4], the truncation error of th
splitting method per time stefit would beO(At®) if both of these equations were solved
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exactly, which gives a sufficient reason to look for a more accurate approximation meth
in the framework of this formulation (see Refs. [2, 5], where the improvement of the DSM(
method is mentioned in connection with Bogomolov’s result). In particular, the improve
ment of the deterministic approach seems to be very promising, since it is expected t
a higher order interpolation formula and an accurate approximation method for ordina
differential equations (e.g., the modified Euler method and the Runge-Kutta method) wc
well in the convection step and the collision step, respectively.

Bogomolov’s illuminating result is, however, incorrect and the above expectation is &
illusion; higher order accuracy is never realized in the framework of the convention
splitting formulation.

In the present study, we derive higher-order approximation methods for the time-depe
dent and spatially honhomogeneous Boltzmann equation from the integral form of tl
equation along its characteristic line. We first reexamine the accuracy of the splitting meth
in Section 1, where it is shown that the truncation error per time atejis not O(At®)
but O(At?); the splitting method is first-order accuraten (the error become® (At)
att =to(= nAt) because of the accumulation oveE= ty/At) steps). As a by-product
of the error analysis, a higher order time differencing method is derived. This is present
in Section lll. Similar to the splitting method, this method consists of two steps, one ¢
which is the same as the convection step in the splitting method. In the other step, howe
not only the collision term but also its variation along the characteristic line is taken int
account correctly. From the integral form along its characteristic line, several higher ord
schemes are derived. Some of them are also presented. In Section IV, the higher o
accuracy of these methods is demonstrated numerically in the shock propagation prob|
using the BGK model equation. Furthermore, in Section V, the extension of higher ord
deterministic methods to the stochastic approach is proposed.

Il. ACCURACY OF SPLITTING METHOD

We examine the accuracy of the splitting method for the full Boltzmann equation in th
initial-value problem,

MEED 16 NV _ qrroc¢.n, fx. ¢ olel. 0<t=at (1)
F(X,€,0) = fo(X. &), (1b)

whereX and¢ are the position and velocity vectorsii, t is the time, andf (X, £, t) is
the velocity distribution function of gas molecules. The collision oper@ws defined by

1
Q(F(©). GOl = 5 /(F(ﬁ’)G(éi) + F()G(E) — FOGE,) — F(€)G®)

x B(IV - n|, V)dQ (n)d¢,, (2a)
£=¢6+nV-n), & =& —nV-n), (2b)
V=g -§& V=V (2c)

wheren is a unit vectorB is a nonnegative function, the functional form of which depends
on the intermolecular force law, and the domain of integration with respegt amd that
with respect ton are the whole velocity space and all direction, respectively.
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In the splitting method, problem (1) is divided into two steps,
convection step,

ohy(X, &, 1) ve. i (X. &0

ot ™ =0, O0<t<At, (3a)
hi(X, &, 0) = fo(X, &), (3b)
collision step,
ahy(X, &, t
MO8 Qhatx. ¢ 0. hoX. C OOIE], 0 <t = At, (42)
hZ(X? £$ O) = hl(xv 57 At)9 (4b)

and the approximate solution of problem (1} at At is obtained ab,(X, &, At).

Let us evaluate the truncation error of the approximate solution per timeAdtem
the following, we assume the smoothnessfgiX, &) for simplicity. The exact solution
f (X, &, At) and the approximate solutidn (X, &, At) are formally written as

At

f(xv €v At) = fO(XOv é) + o Q( f (X[SL C9 S), f (X[S]v C7 S))[&] dS, (5)

At
ha(X. £, At) = fo(Xo, £) + /O Q(ha(X. €. 5). ha(X, ¢ sIE] ds ©)
where
X[s] =X — (At —s), Xo=X][0]. @)
The difference between them is
At
f(X, & At) —ha(X, §, At) = A {Q(f(X[s]. ¢, s), f(X[s], ¢, s)[E]

—Q(h2(X, ¢, 9), ha(X, ¢, 9)[€]} ds. )
ExpandingQ(f, f) in Eqg. (8) arounds = 0, we have

Q(f (X[s], €. 9). T(X[s]. ¢, sN[E] = Q(fo(Xo. €), fo(Xo, O))[€]

+25Q( G| o000 )1+ 0. @
where
323 0 (83: ¢ >(Xo ¢.0
=(¢- oa—;(xo, ) + Q(fo(Xo. ©). fo(Xo. O)IE]. (10)
Similarly,

Qha(X. €. 8). ha(X. ¢, )[E] = Qha(X. . 0). ha(X. ¢, O)[E]
oh
+28Q(8—t2(><, ¢,0), hao(X, ¢, o>) [€] + 0D, (11)
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From Eqg. (4a) and
ho(X, ¢, 0) = hi(X, ¢, Ab)

= fo(Xo, Q) + At(€ - c>§—§§<xo, Q) + O(at?), (12)
we have
Q(h2(X, ¢, s), ha(X, €, sNI[E] = Q(fo(Xo, €), fo(Xo, ONIE]
+281Q( (€~ 0320%. 0. 1%, O ) 6]
+2sQ(Q(fo(Xo. m), fo(Xo, mM)IC]. fo(Xo, ONIE]
+ O(s%) 4+ O(sAt) + O(At?). (13)
From Egs. (9), (10), and (13), we obtain

f(X, & At —hy(X, £, At) = —At2Q<(£ - 02—2“0’ ¢), foXo, C))[E] +0(At%).

(14)
Thus, it is concluded that the truncation error of the splitting method isQtatt®) but
O(At?). In view of the accumulation of the error, we find that the splitting method is a
most first-order accurate iat.

The above estimate is contrary to Bogomolov’s result [4]. He evaluated the collisic
integrals in Eq. (8) but confusefdandg, unfortunately. This miscalculation led the above-
mentioned misunderstanding. In the splitting method, the collision step may also be p
formed before the convection step. In this case, the leading term of the truncation er
differs only in the sign from that shown in Eq. (14).

Ill. HIGHER ORDER TIME DIFFERENCING METHOD

As a by-product of the discussion in Section Il (Egs. (5), (9), and (10)), we obtain
second-order accurate formula:

hi(X, &) = fo(X, &) + AtQ(fo(X, &), fo(X, {))[€]

+ AtZ{Q(Quo(x, n), foX, n)IC]. fo(X, {)IE]

X

—Q <c MO gx, o) €] } (15a)

of
+Zs. (P2 a0k, )i

axX
f(X, &, At) = h1(Xo, &). (15b)

The term multiplied byAt? is the correction to the conventional splitting method. Without
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the space derivatives d§, Eq. (15) corresponds to the splitting formula with second-order
accurate time-integration in the collision step. Because of the collision integrals multiplie
by &, only the conservation of mass is satisfied in Eq. (15a). A second-order accure
formula which is conservative with respect to mass, momenta, and energy will be sho\
later.

LetX® and¢") be the grids it space and i space, respectively. The discrete ordinates
approximation of the above formula is a desired numerical method, which consists of tv
steps:

(i) Compute afo(XD, £®)/9X from the values offy on some grids aroun&(
using a suitable finite difference formula and comphiteX®, ¢y from fo(X©, £
andafo(X®, £€¥)/3X according to Eq. (15a). Several methods have been proposed for tt
computation of the collision integral of the full (or model) Boltzmann equation. We refe
the reader to Refs. [6-9] and omit the details here.

(i) Compute the nearest grid frox)!’ (= X© — At¢?) and let it beX”@). Com-
putehy (X1, €0y from the values oh; on some grids aroun¥”®? using a suitable
interpolation formula.

Step (i) and step (ii) correspond to the collision step and the convection step in the splitti
method, respectively. We can also compute the convection step first. In this case, Eq. (1
is replaced byh;(X, €) = fo(Xp, &) andh; and fy in Eq. (15a) byf (X, &, At) andhg,
respectively.

The accuracy in each step which is necessary for the second-order accuracy of t
computation is as follows. In contrast to the case of the conventional splitting method, tl
error of computation of the collision integral should be at m@$nt?), which seems to
become a severe condition for some of the above-cited methods in the actual computat
The accuracy data presented in Ref. [8], however, indicate that such accuracy can be achie
atleast for the case where the distribution function is axially symmetric in the velocity spac
The truncation error of the interpolation in step (ii) should be at ningit®) [and that of
dfo/0X should be at mogD(At)]. Thus, the interpolation formula should be higher-order
accurate.

As for the convection step, the interpolation aroxid"! is always used and the extrap-
olation, which causes the instability, is never used. This enables the use of a time step la
than the value restricted by the Courant—Friedlichs—Lewy (CFL) condition. This does n
guarantee the stability of total computation, however. Since the collision term is not alwa
positive, the numerical solution begins to take negative and appreciable values on so
grids for a largeAt. This causes the instability. The computation is, however, stable whils
the magnitude of the negative value is negligibly small.

In the above approximation formula for Eq. (5), the integrand is replaced by the fir:
two terms of its expansion arousa:= 0. If the value of the integrand at= At is knowna
priori, the integral can be computed by the trapezoidal rule without loss of the higher ord
accuracy, since the truncation error of this rul€igAt®). In the case where the collision
term is linear with respect td, we can obtain the solutiorf, at s= At, using this rule
without the value of the integrandst= At. That is, the discrete ordinates approximation of
the linear (or linearized) collision term is expressed as the product of the numerical kerr
matrix W and the vector corresponding to the distribution functfo(see, e.g., Ref. [10])
and the computation is reduced to the inversioh-ef(At/2)W, wherel is the unit matrix.
This technique has been developed by Demeio [11] in the analysis of the one-dimensio
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Vlasov—Poisson equation with BGK-like collision term, where the temperature and veloci
in the local Maxwellian and the collision frequency are constant. In the nonlinear cas
however, the inversion of the collision term is not a good idea. Fortunately, a simpler we
which is applicable to the nonlinear case, is available. That is, the integrane-ant
may be computed from the value 6fobtained by the conventional splitting method. The
corresponding formula is

At
f(X7 57 At) = fO(X07 5) + 7{Q( fl(Xﬂ C)v fl(x’ C))[&]
+ Q(fo(Xo, ), fo(Xo, O)IE], (16a)
f1(X, &) = fo(Xo, &) + AtQ(fp(Xo, €), fo(Xo, O)[E]. (16b)

The truncation error of the above formula is alB0At3), since f1(X, &) — f (X, &, At) =
O(At?). Noting that

of
f1(X, ¢) = fo(Xo. €) + At(€ — oa—)f(xo, )

+ AtQ(fo(Xo, 1), fo(Xo, M)[C] + O(AL?), (17)

we find that the former formula (15) is derived from the latter (16). By rewriting formula
(16) in the form

At

At

we find that this formula is conservative; the translation and the collision integrals do n
contribute to the variation of the total mass, momenta, and energy. Incidentally, there
no differential term in the formula (16), which is advantageous for the extension to tr
stochastic approach (see Section V). The computation for Eq. (16) is simpler than that
Eqg. (15) and is omitted here.

We derived two higher order differencing methods for the full Boltzmann equatior
These methods are summarized as higher order integration formulas for the integral of
collision term along the characteristic line. Formula (16) is one of the simplest examples; t
derivation is simple and the truncation error is easily estimated. Of course, there are ot
higher order schemes for the Boltzmann equation. For example, the application of Stran
splitting method [12] is one of them. Strang’s splitting method for the Boltzmann equatio
consists of the convection step fat/2, the collision step forAt, and the convection
step for At/2; the collision step is computed between two convection steps. The err
analysis, similar to that in Section Il, shows that the second-order accuracy can be reali
by using this formulation. This is easily seen from the last sentence in Section II; Stranc
splitting method is regarded as the combination of two conventional splitting methoc
of different order, i.e., convectiof collision and collision+ convection, and the leading
errors of these two methods are canceled. Since the accuracy of the collision step requ
in Strang’s splitting method is at least second order, we have to compute the collisi
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integral twice, which means that the amount of computation is almost the same as that
formula (16).

IV. NUMERICAL DEMONSTRATION OF HIGHER ORDER ACCURACY

In this section, we demonstrate the accuracy of higher-order time differencing metho
developed in Section Il (Egs. (15) and (16)) numerically in the problem of the propagatic
of a normal shock wave. We consider the case where the shock front is propagating il
a gas at rest with the velocity in the; direction. We use the BGK model equation as
the basic equation for simplicity; the collision term of the BGK model equation can b
computed accurately without any difficulty in the present one-dimensional case. The exp
nation of the present method for the one-dimensional BGK model equation is given in tl
Appendix.

We first computed a stationary shock fdr= 2, whereM is the upstream Mach number,
using the present method (Eg. (15)), and we obtained the initial value of the time-depend
problem by applying Galilei transformation to the stationary shock solution.

Before proceeding to the explanation of the propagation problem, we summarize the nc
tions: X;=2"1/7l.% is the space coordinate;=./7l,(8RT,) V% is the time;
(2RT,)"Y?& is the molecular velocity; angd, (27 RT,)"¥%f (%, &, ) is the distribution
function of gas molecules, whekgis the mean free path of the gas molecules at the front
side equilibrium state at rest at temperaflirgdensityp,, andRis the specific gas constant;
p:p, CRTOY?%, [0 = (,0,0)], T.T are the density, flow velocity, and temperature of
the gas, respectively (see the Appendix for the definitions &f andT).

The grid systems used in the propagation problem are as follows. The space regior
limited to—40 < X < 40 and is divided into 400 uniform sections; the widtk is 0.2. The
region foré; is limited to —5.675< & < 9.325 (see the Appendix, where the components
£, and&; are eliminated by using Chu’'s method [13]) and is divided into 100 uniform
sections.

The shock wave was located arouhe= 0 atf = 0 and the computation was carried out
until T = 4 for four cases of the time steff; Af in casen (n =0, 1, 2,3) is 0.4/2"; i.e.

Al = 0.4,0.2, 0.1, and 0.05. It was confirmed the the disturbance at the numerical bounda
X = 440 was negligibly small during the computation; the position of the average densi
[p(X = —o0) + p(X = 00)]/2 wasX ~ —0.61 atf = 0 andX ~ 6.69 atf = 4 (the
thickness of the shock wave 3(1)). As noted in Section lll, the truncation error of the
interpolation should be at mo€i(Af®). The truncation error of the interpolation formula
used in the present computatiorO$AX”) (see the Appendix) andlX” < At® for all cases

of the time step. It should be noted that the CFL condition is not satisfied for all cases
the time step (see the fifth paragraph in Section Ill).

The macroscopic variable for caseH" (= p", ", T"), was compared with that for case
n + 1. The spatial average of the difference betwegnand H"*2,

ZiN:pl‘ H (X0, T) — (%O, T) |

H"(®) = ,
NP

(19)

wherex® (i = 1, ..., Np(=40D) areX grids, is approximately proportional to%(~ At?)
for all times which are common for all cases of the time step. dhe™, andT" ati = 4
are tabulated in Table 1. From the conservation law in a coordinate system moving with t
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TABLE 1

The Difference between Casea and Casen + 1 atf = 4

Eq. (15)

Eq. (16)
Modified Euler
Conventional

Eq. (15)

Eq. (16)
Modified Euler
Conventional

Eq. (15)

Eq. (16)
Modified Euler
Conventional

p° (AT =0.4,0.2)

o (AT =0.2,0.)

p? (AT = 0.1, 0.05)

47 x 104 8.2x 10°°
31 x 10 6.2 x 10°
13x 10°3 17 x 104
D x 103 1.3x10°°

0 (AT = 0.4,0.2)

vt (AT =0.2,0.1)

1.7 x 10°°
1.3 x 10°
36x10°
6.1x 10

v? (AT = 0.1, 0.05)

37 x 104 7.1x 10°°
17 x 104 39x10°
12 x 10°3 20x 10
2l x 103 99 x 10

To (At =04,02 T!(Af=020.1)

15x10°
8.3 x 10°¢
41x10°
48x 10*

T2 (Af = 0.1,0.05)

58 x 104 1.1x10*
22 x 10 53x 10°°
18 x 1073 31x10*
P x 102 15x10°3

24 x10°°
13x 10°
6.9 x 10°°
7.4 x 10*

shock front velocityU, 0, 0), whereU = ,/5/6M, the moments of the present unsteady
solution,

K1) =nx3? /(51 — U)f (%, Hde, (20a)
Lk, ) = 732 / ¢ — U (%, DdE, (20b)
2% F) =732 / G —U)[G1— U)? + 82 + E2)f (%, DaE, (200)

should be-U, 1/24+U?, and—5U /2 — U3, respectively. As the measure of deviation from
the exact solution, we examine

e SR (R0.D) 4 U

K@) = (21a)
Np
_ No | n(g® §) 1 _y2
Ln(f) — ZI:I‘ (X ’t) 2 U |’ (21b)
NP
_ No | 7n (g §) L 59 3
Zn(f)z |:l‘ (X l’\lt)+ 2 +U ” (210)
p

where the superscript denotes the case. The averaged deviatiéAsL", and Z" are
approximately proportional to#4 ~ Af? for all common times. Th&", L", andZ" (n =
0, 1, 2, 3) atf =4 are tabulated in Table 2. These tables indicate that the higher order acc
racy is realized by using present methods. If the space derivatife® X; are
omitted in Eqg. (15), the resulting formula corresponds to the splitting method with th
time integration by the modified Euler method. The formula without the terms multiplie
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TABLE 2
The Deviation from the Exact Value att = 4

Ko(af=04) K!aft=02 K2@at=01) K3 (Af = 0.05)

Eq. (15) 56 x 10 1.3x 10 3.1x10° 7.3x10°®
Eq. (16) 24 x 104 6.1x10° 1.6x 10° 43 x 10
Modified Euler 16 x 1072 39x10* 1.6 x 10 7.8 x10°
Conventional F x 1073 1.8x 1073 9.1x 10" 46 x 10

Lo at=04 L1(af=02 L2Af=01 L3 (At = 0.05

Eq. (15) 11 x 102 2.7 x 10 6.5x 10°° 16 x10°
Eq. (16) 76 x 10 15x 10 3.6 x 10°° 9.1 x 10°
Modified Euler 69 x 1073 31x10°% 15x%x 103 7.7 x 10
Conventional 8B x 1073 41x 108 20x 1073 1.0x 1073

Z°(AT=04) Z1(AT=02 Z2(At=01) Z3 (AT = 0.05)

Eqg. (15) 34 x 107 7.8 x 107 1.9 x 107 45x 105
Eq. (16) 12 x 102 2.8x 10 7.2x 10°° 2.0x10°
Modified Euler 65 x 102 21x 10 1.1x10°3 57 x10*
Conventional 155 x 102 75x 10 3.8x 1072 19x 1073

by At? corresponds to the conventional splitting method. In these tables, the data obtair
by these formulas for the BGK model equation are also tabulated for comparison. The d
obtained by the conventional splitting method are approximately proportionsf;tthe
accuracy of the conventional splitting method is first order. Although the accuracy is in
proved by using the modified Euler method in the collision step (see Table 1), the deviati
from the exact solution is proportional it (see Table 2), and thus, the accuracy is still first
order. Finally, we remark that the higher order accuracy is realized by the nonconservat
formula (15), as well as the conservative formula. This shows that the conservative prope
of the scheme is not the necessary condition for the convergence of the numerical soluti

V. IMPROVEMENT OF DSMC PROCEDURE

In this section, we propose a way to extend the higher-order deterministic method (1
to the stochastic approach. We first rewrite Eg. (16) in the form

f(X, 6, At) _ fO()(ZO’ 5) + fl()év E) + 2AtQ< fl(é’ C) ’ fl(év C)>[E], (22a)
f1(X, &)  fo(Xo, §) fo(Xo, ¢)  fo(Xo, €)
= ey 2AtQ( o, O >[§]. (22b)

In view of the formula which corresponds to the conventional DSMC method, i.e.

f(X, &, At) = fo(Xo, &) + AtQ(fo(Xo, €), fo(Xo, O)IE], (23)

formula (22) is interpreted as the following simulation procedure:

(i) Perform the convection step (free molecular flow) for the time gtep
(i) For each cell, perform the steps (a), (b), (c) below.
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(@) ChooseIN;/2] particles randomly, wherbl. is the number of particles in a cell
and [ ] denotes the greatest integer function.

(b) For the particles chosen in step (a), perform the collision step for time atep 2
(the probability of collision is doubled).

(c) Repeat step (b) again.

In step (i), which is the same as the convection step in the conventional DSMC methc
fo(Xo, &) is produced. In the step (ii.a) the particles are divided into two groups, each
which represent$y(Xo, £)/2. The particles which are not chosen in step (ii.a) represent thi
first term on the right-hand side of Eq. (22a). The particles chosen in step (ii.a) represt
f1(X, &)/2 after step (ii.b) and the sum of the second and third terms on the right-har
side of Eq. (22a) after step (ii.c). Step (i) is one of the second-order accurate methods
the spatially homogeneous Boltzmann equation. This step is related to Eq. (22). Higt
order accuracy of the total computation is not guaranteed if this step is replaced by otl
second-order methods.

In the conventional DSMC method, the particles may collide more than once during tl
time stepAt. The influence of recollision is of the order at?, which is of negligible order
in Eq. (23). In the present simulation procedure, however, the recollision is not allowed
each step, (ii.b) and (ii.c) (the particles which collide in step (ii.b) may collide again in ste
(ii.c)). Since the present simulation method is based on the formula (22), which is corre
up to O(At?), the influence of the recollision is no longer negligible. In order to confirm
the necessity of this restriction, we carried out the preliminary DSMC computation for
spatially homogeneous unsteady problem (the molecular model is a hard sphere and
initial condition isf = exp(—£2/3—£2—&2); cf. Section IV for the notation). ltwas observed
that the permission of the recollision spoiled the second-order accuracy. This is in contr
to the conventional DSMC procedure. In this case, as is mentioned in Ref. [2] and was a
observed in the above preliminary computation, the permission of recollision improves tl
accuracy of the collision step, although, to the author’s knowledge, it has not yet been me
legitimate mathematically. As shown in Section Il and demonstrated in Section IV, howeve
the improvement for the spatially homogeneous equation is not sufficient for higher ord
accuracy in the spatially nonhomogeneous case, where the present simulation procedu
expected to work. Another improved DSMC procedure is obtained by applying Strang
splitting method. As noted in Section lll, the collision step in Strang’s splitting methoc
must be at least second-order accurate. In this case, the collision step can be compute
using other second-order methods. If the collision step of the conventional DSMC methc
which permits the recollision, were shown to be second-order accurate, then the simpl
higher order procedure would be the Strang-type procedure.

In most cases of unsteady problems, the final result of the DSMC method is obtain
as the ensemble average. The present simulation procedure becomes meaningless u
the error due to the ensemble average is at most of the ordet®ofn the above prelimi-
nary numerical experiment, the computation was carried oiNgrNs) = (100, 1000000),
(10000, 10000), (1000000, 100), whergis the number of particles used in the simulation
and N is that of samples used in the ensemble average. As for the values of the mome
732 [E2FdE (i = 1,2, 3), which areO(1), the difference between the first and second
cases appears at the third figure and that between the second and the third cases ¢
fourth figure. Judging from this, a large number of particles are necessary for the meanit
ful use of the present simulation procedure. Such a computation, however, is not beyc
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the ability of the presently available computers, at least for the spatially one-dimensior
case.

VI. CONCLUDING REMARKS

The conventional splitting method for the Boltzmann equation is derived as the first-ord
approximation of the integral form of the equation along its characteristic line. Higher ord
accuracy is never realized by any improvements in the framework of the first-order apprc
imation. In the present study, the above statement is confirmed and the higher order ti
differencing methods for the full Boltzmann equation are constructed as the second-or
approximation of the integral form. The accuracy of higher order methods is demonstrat
numerically for the BGK model equation. The extension to the stochastic method is al
proposed, together with some remarks. The numerical analyses based on the full Bo
mann equation using the present higher order approximation method and the validatior
the improved DSMC method in spatially nonhomogeneous problems are in preparation

APPENDIX: APPLICATION TO ONE-DIMENSIONAL BGK EQUATION

The BGK model equation in the present one-dimensional case is written as

e = Ap(fe— D), (A1)
- W Xp(_<sl—v>;R+Ts§+s§>’ A2)
o= [ tae
v:/glfdg, (A3)

1
T—gr; [ - pv?+ e+ 3] 1o

wherep is the gas density; = (v, 0, 0) is the gas flow velocityT is the gas temperature,
R is the specific gas constant, aAd is a constant4.p is the collision frequency of gas
molecules). The domain of integration in Eq. (A3) is the whole velocity space.

According to Chu [13], the molecular velocity componegtsindé; can be eliminated
in the present one-dimensional case. Multiplying Eq. (A1) by 1&gng £2 and integrating
the results over the wholgé&s plane, we have

9B -0
3 ) (A4a)
P = (g*) , (Adb)
~ ~ ~ 2
1 —_
0o (3) =R (DoY) e
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3/2 / g+ds

5= m /_ ok, (Add)
. 2 o [
T= m (/_oo(f —U)zg-s-dg"‘/_oog—df) s
where
g, = 7922RT) V2t / / déadés, (A5a)
g =x2@RTy 2 [ [ (4 €f) fdends (ASh)

% =2r"YA71x,, T=(8RT/m)Ya 1,
5 @RT) Y2, B =p"p. (A6)
= 2RT)Y%, T=T17'T,

andl,[= (8RT,/n)Y2(Acp,) "] is the mean free path of the gas molecules at the equili-
brium state at rest at the temperatliyeand densityp,.

In Section IIl, we presented two formulas for the full Boltzmann equation (Egs. (15) an
(16)). Since the formula which corresponds to Eq. (16) is simpler than that which corr
sponds to Eq. (15), we omit the former and show only the latter. The formula correspondi
to (15) is

- e e
hi(X, &) = ®(%, £, 0) + ATC(X, £, 0) + At <8C(X’~§’ 0 +E ac(x’f’ 0)>, (A7a)
2 ot X
®(%, &, AD) = hi(%, &), (A7b)
where
C=p(Pe— D), (A8a)
%o = X — AfE. (A8D)

The time derivatives in Eq. (A7a) are evaluated as follows. From Eq. (Ada), we have

0 _ B ., )
(5 +E5z)c-@e-m(Sf+ 8- 7) 45+ o (9)

. . 2 ~

P =50 + &— (- )P

(@=1,%), (A10)

where the time derivatives of the macroscopic varibles are given by
M
X’

a
a

k!

(Alla)

—
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~ ~1 ~ 2
3 ML oM
po — 5T T (Al1b)
ot 0% 0%
~ ~3 =1 ~2 ~1
_af 20M° 4NN a_aM® /. 2\ oMt
o -z - F_Z , Allc
Pt =73 ax  t3'ax T 3Y ) ox (ALlc)
Mi=n"% [ £"g.dé, (A12)
—0oQ

from the conservation equations.

LetX® and& ) be a uniformi grid system and a uniforgngrid system, respectively. The
way of computation for the above formula is as follows: In the first step, the macroscop
variables at the gri@® are computed fron®(x®, €00, 0) by Simpson’s rule, their space
derivatives at the grid are computed from the value® at X*™ (m = 1, 2) by a finite
difference formula, antly (X", ) is computed according to Egs. (A7a), (A9)—(A11). In
the second step, compute the nearest grid &9 (= x© — ATED)) and let it bek P01,
Computeh; (%5, £1)) from the values oh; (x(P0-D=m £y (m = 0, 1, 2, 3) by using
the interpolation formula derived from the Taylor expansion ardifitt . The truncation
error of the interpolation formula i© (AX"), whereAX is the width of% grid.

The formula of the splitting method with the modified Euler method in the collision step i
obtained if all the space derivatives of macroscopic variables are omitted in the final formt
and the formula of the conventional splitting method is obtained if all the differential term
are omitted in Eq. (A7a).
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